
Encoding Consistency: Optimizing Self-Driving
Reliability With Real-Time Speed Data

William Fowler
Tufts University

Medford, MA, USA
william.fowler@tufts.edu

Kate Keahey
Argonne National Laboratory

Lemont, IL, USA
keahey@mcs.anl.gov

Alicia Esquivel Morel
University of Missouri
Columbia, MO, USA

ace6qv@mail.missouri.edu

Abstract
Self-driving cars can revolutionize transportation systems,
offering the potential to significantly enhance efficiency
while also addressing the critical issue of human fatalities
on roadways. Hence, there is a need to investigate meth-
ods to enhance self-driving technologies through end-to-end
learning techniques. In this paper, we investigate methodolo-
gies that integrate Convolutional Neural Networks (CNNs)
to enhance self-driving consistency through real-time ve-
locity and steering estimation. We extend an end-to-end
state-of-the-art learning solution with real-time speed data
as additional model input to refine reliability. Specifically, our
work integrates an optical encoder sensor system to record
car speed during training data collection, ensuring the throt-
tle can be regulated during model inference. An end-to-end
experimental testbed is deployed on the Chameleon cloud
using CHI@Edge infrastructure to manage a 1:18 scaled car,
equipped with a Raspberry Pi as its onboard computer. Fi-
nally, we provide guidance that facilitates reproducibility
and highlight the challenges and limitations of supporting
such experiments.

CCS Concepts: • Computer systems organization →
Robotic autonomy.

Keywords: Autonomous driving, optimization,machine learn-
ing

ACM Reference Format:
William Fowler, Kate Keahey, and Alicia Esquivel Morel. 2024. En-
coding Consistency: Optimizing Self-Driving Reliability With Real-
Time Speed Data. In Workshop on Flexible Resource and Application
Management on the Edge (FRAME ’24), June 3–7, 2024, Pisa, Italy.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3659994.
3660308

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only. Request permissions from
owner/author(s).
FRAME ’24, June 3–7, 2024, Pisa, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0641-7/24/06
https://doi.org/10.1145/3659994.3660308

1 Introduction
Self-driving cars can potentially improve transportation ef-
ficiency and reduce human fatalities – provided they have
access to significant processing power and large amounts
of data [11]. A current limitation of end-to-end learning is
that models are often trained to only predict steering while
maintaining constant velocity. This limitation can be avoided

Figure 1. Speed Measuring Sensor Module used as optical
encoder sensor and Pi-Racer, embedded with a Raspberry Pi
4 and camera.

by using an optical encoder sensor to observe car speed by
tracking wheel revolutions and then controlling speed by
regulating throttle and power sent to the motor. However,
a speed-predicting end-to-end model has only been tested
in simulation [12]. The Donkey Car self-driving project [7]
utilizes a CNN to predict steering and throttle to drive a scale
model car using human-collected data. Predicting a throttle
percentage is problematic, as the power sent to the motor
will have a varying effect on the car’s speed depending on
the road environment and the motor’s capabilities. Thus, a
key question driving this research is whether using end-to-
end learning for current speed prediction will result in fewer
errors and increased accuracy on varying surface conditions.
In this paper, we replicated and extended a similar end-

to-end autonomous driving CNN solution [1], albeit at a
smaller scale, with the goal to enhance self-driving consis-
tency through real-time velocity and steering estimation. We
introduce additional model input to refine reliability through
an optical encoder sensor, specifically designed to record car
speed during training data collection and to regulate throttle
during model inference. Figure 1 illustrates a speed measur-
ing sensor module which we used as optical encoder sensor
embedded with a Raspberry Pi 4 and camera within the PI-
Racer [3] car kit. When configuring a small-scale car with

47

https://doi.org/10.1145/3659994.3660308
https://doi.org/10.1145/3659994.3660308
https://doi.org/10.1145/3659994.3660308
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3659994.3660308&domain=pdf&date_stamp=2024-07-29

FRAME ’24, June 3–7, 2024, Pisa, Italy William Fowler

multiple sensors, optical wheel encoders were shown to sig-
nificantly increase the accuracy of position estimation in
autonomous driving compared to an inertial measurement
unit [2]. Moreover, by leveraging shared resources on the
Chameleon Cloud testbed [6], we were able to efficiently
conduct the project without the need of expensive in-house
hardware. Our work also guarantees practical reproducibil-
ity of our experimental pipeline. Finally, we packaged the
code for the experiment into an artifact publicly accessible
on Chameleon’s Trovi [9] sharing platform. The remainder
of this paper is organized as follows: in Section 2, we discuss
our approach, and present details in the implementation. In
Section 3, we present the evaluation of our work. Section 4
we discuss difficulties encountered during the experiment
and outline how our experiment can be reproduced. Lastly,
we conclude the paper.

2 Approach
Authors in [1] demonstrated that a CNN trained on 72 hours
of real driving data could operate in a real-road setting with
98% precision. Our approach is based on this work and its
replication, resulting in a 1:18 scale car equipped with a
Raspberry Pi 4 as its onboard computer, collecting data by
driving the car around an oval track. Our first goal was to
achieve similar results to this work, and then to extend their
experiments to achieve fully autonomous driving on multi-
ple surface environments. To accomplish this, we equipped
the car with an optical encoder sensor to measure current
speed. The optical encoder was attached to the drive shaft
of the car. The small size of the car prevented us from di-
rectly fitting encoders on the wheels, as mentioned in [2].
Figure 2 illustrates how the optical encoder was attached to
the car. Specifically, our proposed solution to the problem
of autonomous speed control is the Velocity Model, which
uses the same CNN structure as the default model packaged
with Donkey Car (the Linear model), but it is trained to pre-
dict the current speed of the car based on the image input,
while the default Linear model predicts throttle percentage.
Furthermore, to measure performance on different road sur-
faces, we created two tracks: the default track (see Figure 3a)
consists of two lines of orange tape on carpet flooring, and
the Waveshare track (see Figure 3b) which is an orange-lined
track printed on a mat laid out on the floor [3].

By ensuring that the models are built using the same CNN
structure, we control for model complexity. Additionally, the
models are trained on the same dataset. We anticipate that
the model performance should be independent of battery
percentage, and that the performance is improved on dif-
ferent surfaces compared to the control. Furthermore, we
aim to learn to be more cautious and, as a result, have fewer
errors. Figure 4 illustrates our solution architecture and the
I/O structure for Velocity Model. Essentially, the optical en-
coder is used to capture the car’s current speed during data

Figure 2. Encoder is attached to internal drive shaft (ob-
scured by orange tape) and connected back to the Raspberry
Pi

(a) Default track (b)Waveshare track

Figure 3. Two different oval tracks were utilized for the
experiments.

Camera Image InferenceModel SteeringAngle
DesiredSpeed
SpeedCorrection

Drivetrain
Throttle%CurrentSpeedOpticalEncoder

Outputs Transfer to Outputs
Transfer to
Transfer to

Outputs Transfer to Outputs

Outputs
Transfer to“enc/speed꞉” 0.28349513655905856HC-020K Speed Measuring Sensor Module

Figure 4. Solution Architecture, I/O structure for Velocity
model.

collection. Then, we train a CNN to predict steering angle
and the car’s current speed based on the image captured by
the camera. During inferencing, we compare the predicted
speed versus the actual speed observed by the encoder and
make adjustments to the throttle as necessary to speed up
or slow down the car so that it matches the speed predicted
by the model.

3 Evaluation
The components of the car were purchased as part of the
Waveshare PiRacer Pro AI Kit [3]. This kit includes all the
required components for our experiment: Raspberry Pi 4, a
compatible camera, the Waveshare track, a remote controller
for human-controlled driving, as well as the physical parts
of the car, all for around $250 USD. We believe this relatively

48

Encoding Consistency: Optimizing Self-Driving Reliability With Real-Time Speed Data FRAME ’24, June 3–7, 2024, Pisa, Italy

low cost is desirable for an entire small-scale self-driving
testbed. We tested the models on both tracks (Figure 3). The
car was allowed to autonomously drive for 10 minutes at a
time for 5 trials. An error is defined as both front wheels of
the car leaving the track or the car stopping for more than
5 seconds. Successful laps are defined as full laps around
the track completed with zero errors. The accuracy of the
models was calculated using an autonomy score:

Autonomy Score = 1 − Number of Errors
Number of Laps

(1)

Equation 1 outputs an autonomy score that shows how well
a model could complete a full lap without error. The auton-
omy value was at or near 1.0 for both models on the default
track (Figure 5a). On the other hand, in the Waveshare track,
Velocity averaged 473% higher autonomy than Linear (Figure
5b). On the default track, the models made little or no errors
(Figure 6a). On the Waveshare track, Linear made 7.27× as
many errors as Velocity (Figure 6b).

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Velocity Linear

0.000.250.500.751.00

Autonomy S
core (%)

(a) Autonomy Default track

Trial 1 Trial 2 Trial 3 Trial 4 Trial 50.000.250.500.751.00 Velocity Linear

Autonomy S
core (%)

(b) Autonomy Waveshare track

Figure 5. Results show few or no errors on the default track,
whereas on the Waveshare track, the Linear model made
7.27× as many errors as Velocity. Autonomy is a percentage
score showing for what percentage of a lap the car drove on
the road. Trial 4 of the linear model on the Waveshare track
shows an outlier where the car was able to drive well for a
sustained time, which it was unable to attain in other trials.

Errors were recorded on both the default and Waveshare
tracks during a 10-minute period. On the default track, suc-
cessful laps using the Linear model were 2.11 times quicker
than with Velocity (Figure 7a). On the Waveshare track, this
ratio was 2.85 (Figure 7b). Over the course of 5 trials, the ve-
locity model successfully completed 1.86 times as many laps
on theWaveshare track as the linear model. Considering that

Trial 1 Trial 2 Trial 3 Trial 4 Trial 50.000.250.500.751.00 Velocity (normal surface) Linear (normal surface)

Number of
Errors

(a) Number of Errors: Default track

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5010203040

Number of
Errors

Velocity (Waveshare track) Linear (Waveshare track)

(b) Number of Errors: Waveshare track

Figure 6. Errors made on default and Waveshare tracks
respectively in a 10 minutes period.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5010203040
Number of

Laps
Velocity (normal surface) Linear (normal surface) 50

(a) Default track

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5010203040

Number of
Laps

Velocity (Waveshare track) Linear (Waveshare track)

(b) Waveshare track

Figure 7. Successful laps completed on default and Wave-
share tracks respectively in a 10 minutes period. This plot
gives insight into which track allowed for faster laps.

the velocity model also achieved a 473% higher autonomy
score than the linear model, we can observe that the velocity
model, when operating on track surface conditions different
from the environment it was trained on, outperformed the
linear model in reliability, despite both models being trained
on the same dataset.

49

FRAME ’24, June 3–7, 2024, Pisa, Italy William Fowler

4 Experimental Methodology and
Reproducibility

In this section, we will explain how our experiment can
be reproduced. First, one must purchase and assemble the
small-scale car. In the AutoLearn education module [4], a
detailed guide for purchasing and assembling the physical
components of the car is outlined in the instruction guide
[10]. This instruction guide also outlines the setup process
for connecting the Raspberry Pi to CHI@Edge. Finally, an ar-
tifact containing the code needed to run the experiment can
be accessed on Trovi [5], Chameleon’s artifact sharing plat-
form. Conducting this experiment was not without difficulty.
Working with physical components can be time-consuming,
as required parts must be ordered and delivered, and inconsis-
tent, as parts can break or wear down. Making modifications
to the vehicle, like we did with the encoder, can also add an
additional layer of variability that we would be unable to
control in subsequent iterations of this experiment.

Despite these difficulties, our experimental workflow, once
the physical components were set up, was streamlined by the
use of shared resources on Chameleon, which facilitated the
experimentation through the utilization of the shared GPU
resources provided by the infrastructure. Since we needed
to train multiple self-driving models on large amounts of
data, this would have taken excessive amounts of time if we
only had access to our laptops or even basic CPUs. By using
Chameleon, we could reserve a GPU for a period of time,
complete model training, and then load the trained models
back onto the Raspberry Pi. Finally, our consideration of
reproducibility while conducting the experiment not only
made our end result more useful to future researchers, but
it also helped us backtrack through our workflow while
working on the experiment.

5 Conclusions
In order to ensure safe autonomous driving, neural networks
must be able to properly control speed. We presented a com-
parison of two different methods for controlling the steering
and speed of a scale-model car with a CNN. Our proposed
solution, which predicts the current speed of the car, resulted
in 7.47 times fewer errors than a model of the same structure
that predicts throttle percentage. These results demonstrate
that a velocity-dependent model is better suited for safety in
autonomous driving. Future work will involve examining the
trade-offs between model accuracy and car speed, as high-
lighted in previous studies such as [8]. By exploring these
dynamics, existing models can be refined and more robust
autonomous driving systems capable of navigating diverse
environments with precision can be developed. Additionally,
further experimental setups on the Chameleon testbed using
CHI@Edge computing infrastructures with complex real-
world implementation and the integration of other optical

encoder sensor systems for real-time speed data collection
can be explored to ensure accurate model predictions.

Acknowledgments
This paper’s results were obtained with support from the
National Science Foundation through the Chameleon testbed
(Award Number 2027170) and the FOUNT project (Award
Number 2230077). The opinions, findings, conclusions, or
recommendations expressed in this publication are solely
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

References
[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard

Firner, Beat Flepp, PrasoonGoyal, LawrenceD Jackel, MathewMonfort,
UrsMuller, Jiakai Zhang, et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316 (2016).

[2] Niklas Brusên. 2019. Simultaneous Localization and Mapping of a
small-scale vehicle using low-cost IMU, optical wheel encoders and
LiDAR.

[3] Waveshare Electronics. [n. d.]. PiRacer Pro AI Kit. https://www.
waveshare.com/piracer-pro-ai-kit.htm. Accessed: 2024-4-12.

[4] Alicia Esquivel Morel, William Fowler, Kate Keahey, Kyle Zheng,
Michael Sherman, and Richard Anderson. 2023. AutoLearn: Learning
in the Edge to Cloud Continuum. In Proceedings of the SC ’23 Work-
shops of The International Conference on High Performance Computing,
Network, Storage, and Analysis (, Denver, CO, USA,) (SC-W ’23). As-
sociation for Computing Machinery, New York, NY, USA, 350–356.
https://doi.org/10.1145/3624062.3624101

[5] Keahey Kate, Anderson Jason, Powers Mark, and Cooper Adam. 2023.
Three Pillars of Practical Reproducibility. In rewords23: 3rd Workshop
on Reproducible Workflows, Data Management, and Security During
eScience’23.

[6] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody
Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex
Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon
Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

[7] Tawm Kramer. 2016. Donkey Car. https://github.com/autorope/
donkeycar.

[8] Xiaopeng Li. 2022. Trade-off between safety, mobility and stability in
automated vehicle following control: An analytical method. Trans-
portation research part B: methodological 166 (2022), 1–18.

[9] Alicia Esquivel Morel, William Fowler, Kate Keahey, Kyle Zheng,
Michael Sherman, and Richard Anderson. 2023. AutoLearn Au-
tonomous Cars. https://www.chameleoncloud.org/experiment/share/
8800ebd1-411e-4e94-9b62-6883f09188e7 [Accessed: 2024-3-3].

[10] Alicia Esquivel Morel, William Fowler, Kate Keahey, Kyle Zheng,
Michael Sherman, and Richard Anderson. 2023. Chi@Edge Education.
https://chi-education.gitbook.io/chi-edge-or-education/ [Accessed:
2024-3-3].

[11] Mark Ryan. 2020. The future of transportation: ethical, legal, social
and economic impacts of self-driving vehicles in the year 2025. Science
and engineering ethics 26, 3 (2020), 1185–1208.

[12] Shakti N Wadekar, Benjamin J Schwartz, Shyam S Kannan, Manuel
Mar, Rohan KumarManna, Vishnu Chellapandi, Daniel J Gonzalez, and
Aly El Gamal. 2021. Towards end-to-end deep learning for autonomous
racing: On data collection and a unified architecture for steering and
throttle prediction. arXiv preprint arXiv:2105.01799 (2021).

50

https://www.waveshare.com/piracer-pro-ai-kit.htm
https://www.waveshare.com/piracer-pro-ai-kit.htm
https://doi.org/10.1145/3624062.3624101
https://github.com/autorope/donkeycar
https://github.com/autorope/donkeycar
https://www.chameleoncloud.org/experiment/share/8800ebd1-411e-4e94-9b62-6883f09188e7
https://www.chameleoncloud.org/experiment/share/8800ebd1-411e-4e94-9b62-6883f09188e7
https://chi-education.gitbook.io/chi-edge-or-education/

	Abstract
	1 Introduction
	2 Approach
	3 Evaluation
	4 Experimental Methodology and Reproducibility
	5 Conclusions
	Acknowledgments
	References

