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Abstract. Multi-cloud environments integrated with various Internet
of Things (IoT) have resulted in a diverse range of observational instru-
ments that can be used and adapted for various use cases. An important
role of these observational instruments in scientific research is to provide
valuable data that can be understood and help solve practical problems.
The evolution of FLOTO, an observational instrument initially designed
for bandwidth measurement, has led to its adaptation for diverse multi-
sensor applications. Leveraging its support for mainstream Single Board
Computers (SBCs), it facilitates the deployment and operation of sci-
entific instruments that enable data collection and sharing among dif-
ferent user groups. This paper explores the transition of FLOTO from its
original purpose to IBIS an infrastructure management framework ca-
pable of integrating multi-sensor technologies, including environmental
sensors and cameras for data acquisition and analysis. IBIS, inspired
and named after the perceptive bird known for its keen eyesight, embod-
ies the essence of a multi-sensor observational instrument designed for
scientific discovery. We present a reference operation example that pro-
vides practical insights into implementing IBIS-based instruments for
optimizing greenhouse environments with precision agriculture. Further-
more, we showcase how this application can be seamlessly integrated
into the IBIS framework, allowing users to deploy and operate varied in-
struments in diverse environments. Lastly, this work provides guidelines
for reproducibility, contributing to IBIS’ documentation and fostering
community accessibility.
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1 Introduction

The rapid development of the Internet of Things (IoT) has revolutionized how
data is collected. IoT devices can be integrated with multi-sensor and Single
Board Computers (SBCs) and transformed into observational instruments for
scientific exploration. In addition, these observational instruments can be inte-
grated within multi-cloud environments, aiming researchers to gather valuable
and larger numbers of data streams from a wide range of sources. Thus, enabling
the connectivity between these physical things and the Internet makes it possi-
ble to remotely access any data and control this physical environment [20]. The
evolution of FLOTO [27, 18], a Discovery Testbed and Observational Instrument,
initially designed for bandwidth research, has led to its adaptation for a diverse
range of multi-sensor and multi-cloud applications.

FLOTO is an observational instrument that facilitates the deployment and
management of widely used low-cost SBCs for large-scale data collection in field
deployments. These scientific and observational instruments can be deployed for
data acquisition and allow shared operation in remote areas without physical
access or intervention. Furthermore, by enabling multi-tenant sharing among
various applications and user groups, FLOTO aims for researchers to collaborate
and unlock the full potential of the collected data. Real-time monitoring of air
quality across urban landscapes, tracking movements of endangered species, or
even measuring subtle fluctuations in atmospheric pressure exemplify how its
capabilities can facilitate data collection for a nuanced understanding of di-
verse phenomena. A key question driving this research is whether FLOTO can
be adapted to measure phenomena beyond its original focus on broadband. To
achieve this, we propose adapting it into a flexible observational instrument. This
adaptation involves seamless integration and deployment with a wider range of
sensor peripherals. These peripherals could encompass environmental sensors,
motion and position trackers, biometric monitors, imaging devices, and more.
Additionally, it can be equipped to provide meaningful analysis of these new
measurements, allowing researchers to analyze phenomena previously outside
its scope.

This paper explores the evolution of FLOTO from its initial design and purpose
to IBIS an adaptable platform capable of integrating multi-sensor technologies,
including environmental sensors and cameras for data acquisition and analysis.
IBIS, inspired and named after the perceptive bird known for its keen eyesight,
embodies the essence of a multi-sensor observational instrument designed for sci-
entific discovery. Just as the Ibis utilizes its senses to navigate its environment
and gather valuable information, the IBIS instrument empowers researchers with
critical insights through gathering and interpreting information from its environ-
ment. Prototype demonstration will highlight its ability to seamlessly integrate
various sensor types, and effectively address diverse data collection scenarios.
Finally, we illustrate IBIS’ functionality in real-world settings and propose a
methodology for reproducibility in “edge-to-cloud” experiments in a way that
promotes community accessibility. The remainder of this paper is organized as
follows: in Section 2, we discuss the approach and design of this edge-based ob-
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servatory instrument. In Section 3, we present IBIS and its adaptation for an
optimized greenhouse environment with precision agriculture use case. Section 4
presents application deployment and data collection. Section 5 presents the re-
producibility aspect, and Section 6 the related work. Lastly, Section 7 concludes
the paper and provide some insights for future work.

2 Approach

IBIS is an infrastructure management framework underlying the FLOTO project
which deploys a thousand Raspberry Pi devices nationwide to measure the qual-
ity of broadband [18]. In this section, we first summarize how IBIS works, and
then describe how it can be extended to support applications beyond broadband
measurement, in particular applications that require combining compute capa-
bility at edge supplied by the SBCs with sensing abilities provided by a range of
IoT peripherals.

2.1 IBIS: An Observational Instrument

The IBIS infrastructure [18,8] implements a general observational instrument
pattern where a large number of observation points can be deployed and man-
aged to conduct observation, and then report data resulting from this observation
to a central aggregation point where the data can be collected, combined, and
processed. In the current IBIS implementation, the observation points are im-
plemented as single board computers (SBCs), cost-effective solutions that are
lightweight enough to support large deployment scales, yet powerful enough to
provide sufficient cycles for observation. The infrastructure supports easy de-
ployment of such observation points and organization into fleets composed of
hundreds of devices that can be reliably managed over time without requiring
physical access to any device.

The devices are monitored and managed via a dashboard that displays device
information, including device profiles, performance statistics, which applications
are running on a given device, and allows operators to execute device-specific
actions. To provide the actual observation function, IBIS supports the deploy-
ment of containerized observing applications on selected groups of devices. These
applications interact with the environment to capture and report on relevant phe-
nomena. For example, the FLOTO project applications consist of different types
of broadband tests that measure and report on broadband quality at the deploy-
ment site. Each observing application generates data that represents the result
of its observation. This data is then uploaded to an aggregation point by a data
uploader application at which point it can be stored, combined, or processed.

2.2 Adapting IBIS

We point out in [18] that, like any scientific instrument, IBIS has the potential
to be adapted to answer different scientific questions by varying its deployment
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scope, adapting it to observe diverse phenomena by coupling it with appropri-
ate sensors or running custom applications, and using tailored data aggregation
techniques. For example, instead of measuring and reporting on the quality of
broadband by running broadband tests, we can observe and report on wildlife
sightings similarly to what was done in [32], or use distributed learning [14] to
train models locally on protected biometric data and send those models to an
aggregator that combines them rather than only preserving and managing access
to data. IBIS supports such adaptation by allowing the user to customize three
qualities. First, a user can equip the SBCs to support the desired observational
function on a hardware level. This can be done, for instance, by establishing an
Ethernet connection to a router to measure broadband or attaching a camera
to enable visual analysis. Second, a user needs to run an application that imple-
ments the desired observational function, e.g., runs broadband tests, performs
image recognition tasks, or trains a model based on observed images. Third, a
suitable data aggregator can be created to process the reported data, which can
be as simple as storing it or the aggregation can involve a data processing step as
in averaging gradients in learning models. The sections below discuss how IBIS
supports these adaptation actions.

2.3 IBIS User Workflow

Hardware customization. Raspberry Pi, the principal SBC that IBIS cur-
rently supports, offers a flexible peripheral connection system. The USB ports
provide compatibility with familiar peripherals, while a dedicated ribbon cable
port is available for dedicated camera modules. However, the true versatility lies
in the General-Purpose Input/Output header (GPIO) — a 40-pin connector on
all recent Raspberry Pi models. This header provides voltage and ground pins for
powering circuits and general-purpose pins for two-way communication. Users
can collect data from a wide range of sensors by interfacing with these pins.
Some pins even support specialized protocols like I12C, SPI, UART, and PCM,
which are crucial for certain sensors to communicate effectively with the Rasp-
berry Pi. These require a secure connection to the correct pins for proper func-
tion. The pins can be configured for peripheral-specific protocols in the OS hard-
ware configuration file (/boot/config.txt). To simplify complex GPIO con-
nections, Raspberry Pi offers Hardware Attached on Top (HATS), self-contained
modules that stack directly onto the device, utilizing all GPIO pins. This mod-
ular approach allows for easy expansion of the Raspberry Pi’s capabilities.
Adding Devices with IoT peripherals to IBIS. The initial step in periph-
eral installation involves following the manufacturer’s instructions for installing
the device on a Raspberry Pi, e.g., plugging it into a USB port, connecting a cam-
era cable to the camera serial port, attaching a HAT to the GPIO pins, or con-
necting wires to the corresponding GPIO pins. Next, the peripheral must be reg-
istered with IBIS. In principle, IBIS can support any Raspberry Pi-compatible
peripherals that can be accessed via Linux device interfaces at the software level.
In practice, with IoT experiencing rapid innovation and new peripherals becom-
ing available every day, we can only provide out-of-the-box support for a limited
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set of such peripherals — the most common ones, covering the typical use cases
— and provide instructions for users to develop their custom support to cover
remaining and emergent use cases using existing drivers.

Supported interfaces currently include the Raspberry Pi camera module, access
to the analog and digital I/O pins of the GPIO subsystem, and the SPT and 12C
serial interfaces. To enable access via those interfaces, device operators must
submit at least enough metadata so that application developers know how to
access a peripheral, e.g., “device /dev/i2¢c-1 must be mounted into the container,
and the sensor accessed at address 0x78, using a documentation link or library”.
To extend the scope of the system beyond these use cases, we provide docu-
mentation that allows users to extend this support. Briefly, the OS uses “device
trees” — a data structure that describes the hardware components to map phys-
ical interfaces to Linux devices under /dev and load relevant kernel modules; if
necessary the user can use the meta-data to specify additional device trees or
parameters to load at boot (IBIS propagates this to the device’s config.txt file),
in addition to the information for application developers on how to access the
interface once presented via the OS.

Application Development. Developing a new application consists of develop-
ing a Docker container containing an application capable of interacting with the
peripheral using the information provided in the meta-data. Since IBIS itself
supports primarily production capability, we recommend that this development
is done on CHIQEdge [16], an edge testbed of the Chameleon project [17,4]
which supports the same device and peripheral model and uses container de-
ployment to reconfigure devices in a way similar to IBIS. After deploying the
container, the user mounts the relevant interfaces from /dev (created by the
OS loading device trees and kernel modules on boot) and then communicates to
those interfaces using the information in meta-data, usually by leveraging stan-
dardized libraries already built into the Raspberry Pi such as the libcamera
driver and Sense HAT libraries.

Data Collection. Lastly, the user can pair the application with a data uploader
to transfer the collected data from the device to a central collection and process-
ing point. To do this, IBIS offers an rclone-based default uploader application
that connects to a data aggregation service currently running on the Chameleon
Cloud [17] (An open experimental testbed for Computer Science funded by the
National Science Foundation) and collects data from all IBIS deployments by
default. Alternatively, the user can clone or modify the data uploader to con-
nect to their own data collection facilities, such as a public cloud, or provide an
upload capability more suitable to their deployment conditions (e.g., weighing
power efficiency against transfer efficiency). For portability, the application is
configured to honor environment variables passed to it at runtime, these vari-
ables are used to customize the operation for a particular user, such as to specify
which S3 bucket to upload data to, or how often to take samples. When a job
is executed on IBIS, these variables are packaged along with the containers to
which they should be applied.
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3 Case Study, IBIS to the Test: Optimizing Greenhouse
Environments with Precision Agriculture

In this section, we showcase a use case study where we have adapted IBIS as
an edge-based instrument for a specific research scenario, i.e., precision agricul-
ture. This case study will explore the different IBIS components used and how
they were configured to address a real-world scientific challenge. This use case
study showcases IBIS by focusing on its applicability in optimizing greenhouse
environments through precision agriculture.

3.1 Precise Environmental Control

Precision agriculture optimizes crop yield and growth in greenhouse production
systems. These techniques, consisting of multi-sensor data collection, analysis,
and decision-making systems, enable holistic control and management of crops
according to the dynamics of environments, like temperature, humidity, CO5 lev-
els, light intensity, soil moisture, and air quality. All these factors are essential
for optimal plant growth [6] and, traditionally, monitoring these parameters has
been labor-intensive [5], and subject to visual observations. IBIS can simplify
greenhouse management by integrating sensors that can continuously collect
data on various aspects of plant health and the surrounding environments, fur-
ther enhancing this application with remote sensing, and providing real-time,
high-resolution data on plant parameters.

The measured plant characteristics can include plant height, leaf area index,
chlorophyll content, and stress levels [24]. With the comprehensive data of plants
and environments from sensors, farmers can precisely monitor and analyze plant
development and health conditions across the entire greenhouse, and make opti-
mal management decisions [29]. This enhances timely interventions to maximize
yield and quality while reducing resource input. For instance, accurate measure-
ments of soil moisture, temperature, and light intensity allow for adjustments
to irrigation schedules, optimization of nutrient delivery, and mitigation of en-
vironmental stressors. Thus, these combined approaches lead to improved crop
performance and resource efficiency.

3.2 Transformation to Edge and Leveraging Remote Sensing

By leveraging the IBIS infrastructure management framework as an edge-based
observatory instrument, farmers can analyze data in real time and make in-
formed decisions about irrigation, ventilation, and other environmental controls.
This data-driven approach can aid farmers in cultivating diverse crops across dif-
ferent climates and seasons, ultimately leading to improved yields and resource
efficiency. Figure 1 depicts the general architecture for leveraging sensing in
greenhouse environments with precision agriculture. Adapting IBIS to lever-
age remote sensing involves deploying a strategic network of sensors throughout
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Fig. 1. General architecture for leveraging remote sensing in greenhouse environments
with precision agriculture.

the greenhouse. The number and distribution of these sensors depend on sev-
eral factors including greenhouse size, required spatial resolution, environmental
variation, and types of measurements [25, 31].

For instance, larger greenhouses may require more sensors for fine-grained
measurements in different areas. Additionally, the crop type must be considered,
as some crops may have specific data requirements, and sensor parameters must
be selected to capture specific variables that are crucial to the crop’s health and
growth [23]. Tt is also important to capture soil moisture variations across the
greenhouse, considering different locations and depths within the soil profile to
run tests that can measure the moisture at different depths. This can help to
correlate temperature and moisture to evaluate the utility of a sensor at one
unique depth. This can aim to create plant trial setups for testing biowaste
materials in organo-mineral fertilizers [26]. These sensors are connected to the
IBIS devices equipped with apps for data processing and communication.

Reliable communication plays a critical role in real-time data processing and
analysis. The sensor data can be transmitted through wireless communication
technologies like WiFi or Zigbee, or long-range ones, like LPWAN, NB-IoT,
LoRa, or LoRaWAN |[2]. The application is designed to continuously collect and
transmit data from the sensors to the IBIS devices and, consequently, to the
data aggregator. The collected data requires filtering to remove unnecessary
data points for efficient analysis, in addition to performing basic data analytics
to prepare it for further processing. Sensor readings must be filtered to elimi-
nate potentially erroneous readings. Once processed, the data is transmitted to a
central analytics engine or cloud platform for in-depth analysis and storage. For
example, the collected imagery data can be processed to build orthomosaic im-
ages and point cloud data of target plans, through a more holistic high-resolution
spatial and spectral reflectance information of each plant, and its organs [30].
In addition, various analytics and machine learning models can be applied to
extract meaningful insights and patterns. For instance, inference models can
be developed to correlate plant growth parameters with environmental factors
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and weather predictions, optimizing irrigation scheduling, nutrient management,
and pest control strategies [1]. Leveraging advanced analytics allows for further
enhancement of crop productivity, resource efficiency, and sustainability.

4 Application Deployment and Data Collection

Adaptations to the hardware. The chosen application for this prototype
deployment focuses on monitoring several key environmental factors that are
crucial for optimal plant growth. The initial hardware setup needs to be adapted
based on the application’s needs. For our prototype, illustrated in Figure 2, we
rely on the Google Coral Environmental Sensor Board board, an add-on board
with sensing capabilities.

This board provides atmospheric data
such as light level, barometric pressure, tem-
perature, and humidity, and it is designed to
work with the 40-pin GPIO header. In addi-
tion, we added a Raspberry Pi mini camera
module with a fixed focus and the provided
mount. The camera communicates through
the Camera Serial Interface (CSI) with the
libcamera library and Picamera2 to capture
images. Continuous data collection from the
Google Coral Environmental Sensor Board
provides real-time updates on the environ-
mental metrics mentioned above. Image cap-
ture with the camera is triggered at a preset interval, capturing images every 30
minutes. These captured images can be used to for example, to measure plants’
health. To power the device and sensors reliably, they were connected to an AC
power source, with surge protectors implemented for each connection to ensure
uninterrupted operation.

Fig. 2. IBIS hardware adaptation.

Challenges in Hardware Adaptation:

1. More complex peripherals for the Raspberry Pi make assumptions about the
OS’s inclusion and auto-detection of device trees and kernel modules, such
as the “Camera Module 3” needing a very new kernel for auto-detection,
or the “Coral sense HAT” which includes a custom device tree onboard in
flash memory and expects the Raspberry Pi to load it automatically. Since
IBIS devices do not run the Raspberry Pi OS distribution, supporting the
firmware for these devices can be complex and error-prone.

2. IBIS currently uses a “one size fits all” networking model, where containers
have access to a private, per-device network, and reach the outside world
through NAT and the device’s routing table. This makes it difficult to sup-
port experiments such as comparing Wi-Fi and Ethernet performance on
the same device or running an experiment across two devices, using one as a
source, and the other as a sink for the traffic. More control of how container
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network traffic is mapped to the physical network interface of a device is an
important feature to add.

Precision Agriculture Application. At the edge level, the application per-
forms minimal data processing on the sensor data. Sensor readings like tem-
perature, ambient light, and humidity can be averaged over a specific window
for noise reduction before transmission. Captured images might undergo a basic
resizing process to reduce storage requirements. The collected sensor data (in-
cluding averaged readings for temperature and humidity) and captured images
are periodically transmitted from the IBIS devices to a central server hosted
on a cloud platform. On the server, the data is further analyzed using a data
visualization dashboard. This dashboard displays real-time and historical trends
for all collected metrics, allowing for comprehensive monitoring of environmen-
tal conditions. Captured images are stored on the server and can be manually
inspected for visual signs of plant stress, such as discoloration. Additionally,
software-based image analysis techniques could be explored in the future for au-
tomated stress detection. The data can be analyzed and visualized and generic
analysis tools, including open-source and commercial options e.g. Grafana [3],
can offer user-friendly interfaces for building dashboards.

Data Collection. The IBIS devices are programmed to collect sensor data at
a user-defined frequency. A high-frequency collection rate (e.g., every minute)
allows for detailed monitoring of environmental fluctuations within the green-
house. IBIS provides a customizable data uploader container [9] that can be used
in such multi-container applications. This built-in customizable data uploader
container allows any data placed in this container to be uploaded to a designated
cloud storage location. For this prototype, we rely on Chameleon Cloud [17] and
its object store [19]. It is also important to highlight that this process can be
adapted to store any other generic data from other types of sensors, and it can
be easily configured to target commercial cloud back-ends.

5 Reproducibility

Our work prioritizes artifact reproducibility by employing the IBIS application
store, a dedicated repository for sharing research workflows. We also consider
practical reproducibility [15], supporting accessible, integrated, and reusable ex-
periments, represented as a combination of hardware, experimental environment,
experimental body, and data analysis. The example prototype described in this
paper (gather environmental data situated within a greenhouse environment) is
publicly available on the IBIS website [10]. We consider three levels of exper-
iment reproduction within the IBIS infrastructure; first, users can achieve an
exact replication by deploying the application provided in the public listing of
our containers and applications on the IBIS dashboard, utilizing the same sensor
setup (Raspberry Pi model and sensor types) within the IBIS environment and
following the instructions provided in the getting started documentation [11].
This approach guarantees the most comparable results to the original experi-
ment. In addition, the IBIS infrastructure’s flexibility allows users to leverage
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applications while employing different compatible sensors to collect environmen-
tal data. While the core functionalities (data collection and analytics) remain the
same, the specific sensor data might differ due to varying sensor characteristics.
This variation approach can provide valuable insights into how the experi-
ment behaves with different sensor types. Lastly, further exploration would
be beyond replicating the experiment. Users can potentially modify the appli-
cation’s source code to capture additional sensor data or implement different
data processing techniques within the IBIS framework. While IBIS promotes
reproducibility, one potential challenge users might face is access to a Rasp-
berry Pi and compatible sensors for an exact replication. This challenge can be
overcome by emphasizing the importance of detailed and comprehensive docu-
mentation for applications and their deployment. Clear instructions, including
a thorough explanation of the application’s purpose and functionality, ensure
clarity for users even with potentially different sensor setups. Additionally, the
documentation should provide detailed descriptions of the sensor data collected
and the averaging process. Guidance on how to interpret the results and po-
tential considerations for variations in sensor setups should also be included.

6 Related Work

The convergence of multi-cloud environments and the Internet of Things (IoT)
has led to a rise in observational instruments capable of collecting diverse data for
various applications [12, 28]. This aligns with the growing emphasis on leveraging
sensor data to address real-world challenges and advance scientific research[22].
Several existing technologies address the challenge of managing large-scale de-
ployments of devices and multi-sensors for data collection and analysis. Cloud-
based platforms like AWS IoT Greengrass [13], and Azure IoT Edge [7], offer
user-friendly interfaces and robust functionalities for device management, ap-
plication deployment, and data integration with cloud services. However, these
platforms can lead to vendor lock-in and ongoing costs. Open-source alternatives
like OpenBalena [21] fleet management provide flexibility and control but do
not support multi-tenancy and do not handle scalability and back-end services.
We leverage this open-source fleet management and extend it with features for
scaling and user experience: multi-tenant usage, ad-hoc shell commands, device
collections, and a device dashboard. IBIS exemplifies a implementation of an
“observational instrument”, based on zero-touch installation, automated man-
agement, cloud integration, and data collection from multi-sensors.

7 Conclusions and Future Work

The Internet of Things (IoT) has revolutionized how data can be collected and
processed. In addition, Single Board Computers (SBC) can be integrated with
multi-sensors and transformed into observational instruments for scientific ex-
ploration. This paper presents the transition of FLOTO from its original purpose
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to IBIS an infrastructure management framework capable of integrating multi-
sensor technologies. The seamless integration with various sensors and the abil-
ity to analyze this new data addresses a key research question: Can FLOTO be
adapted to measure phenomena beyond broadband? This paper demonstrates
IBIS’s adaptability and effectiveness through a real-world precision agriculture
application, showcasing IBIS’s potential to enhance data collection methodolo-
gies. Lastly, the proposed reproducibility methodologies are based on practical
reproducibility, promoting open access within the research community. Future
work includes more advance sensor integration, and broaden the application
scope of this work. It can include implementing advanced data analysis like Ma-
chine Learning and visualization tools. In addition, a more flexible approach that
can allow control over container network traffic will be considered.
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