
Retrieval-Augmented Generation (RAG) To Enhance Open
Testbed Documentation

Saieda Ali Zada

saieda@udel.edu

University of Delaware

Newark, DE, US

Marc Richardson [advisor]

mtrichardson@uchicago.edu

University of Chicago

Chicago, IL, US

Kate Keahey [advisor]

keahey@uchicago.edu

Argonne National Laboratory

Lemont, IL, US

ABSTRACT
Researchers in high-performance computing (HPC) and cloud envi-

ronments encounter disparate sources of documentation and dif-

ficulties finding accurate information. This can cause inefficiency,

increase the reliance on support teams, and change the focus of

the researcher from the main the experiment. To address these

challenges, we developed an AI powered search system leveraging

large language models (LLMs) with Retrieval-Augmented Gener-

ation (RAG) to unify various documentation sources and provide

accurate, context-aware answers with cited references to relevant

sources. We evaluated our RAG system with Chameleon Cloud

testbed documentation as a case study, finding that our RAG sys-

tem outperforms other generic LLMs in answering a variety of

user questions and performs comparable to proprietary LLMs when

properly tuned and optimized.

KEYWORDS
High-performance Computing, Chameleon Cloud, Retrieval Aug-

mentation, Large-Language Models

ACM Reference Format:
Saieda Ali Zada, Marc Richardson [advisor], and Kate Keahey [advisor].

2025. Retrieval-Augmented Generation (RAG) To Enhance Open Testbed

Documentation. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation email (Conference acronym ’XX). ACM,

New York, NY, USA, 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Large-scale scientific infrastructure, such as a research testbed,

is crucial for advancing science by enabling complex, large-scale

experiments in CS systems research. Despite the availability of

documentation for these systems, users often find it challenging to

navigate the extensive materials, leading to missing or inconsistent

information. This inefficiency slows down research and redirects

support staff from other critical duties to user assistance.

Recent advancements in Large Language Models (LLMs), par-

ticularly Retrieval-Augmented Generation (RAG) [12], offer a new

solution to this knowledge gap. RAG-enabled LLMs can generate

accurate answers with specific references, providing immediate,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Architecture diagram of our RAG system

high-quality assistance to users and freeing up engineering time.

This poster details the development and evaluation of a RAG system

using Chameleon Cloud [11] testbed documentation as a case study.

Our RAG system demonstrates superior performance compared

to other generic LLMs in answering various user questions about

Chameleon and performs comparably to proprietary LLMs when

properly optimized.

2 APPROACH
Our approach employs a standard RAG architecture [12] built with

the LangChain framework [14]. Figure 1 illustrates the three main

components.

Document Processing: We collected sources collected from the

main Chameleon ReadtheDocs website [5], FAQs [7], blogs [4], and

public posts from the Forum [6]. We retrieved the HTML page for

each source, formatted it to remove low-value content (e.g., website

headers and footers), and recoreded its URL.

Indexing: We divided documents into “chunks" – short text seg-

ments (500 to 2000 tokens or words) to enhance retrieval precision

and ensure compatibility with LLM context windows [18]. Each

chunk is converted into a numerical vector representation using

the “BAAI/bge-large-en" embedding model [3], allowing the system

to compare semantic similarity rather than just keywords. These

embeddings are stored in a FAISS [10] vector database for quick

and efficient similarity searches.

Retrieval and Generation: When a user submits a query (e.g.,

“How do I access Chameleon hardware?”), the system retrieves

the most relevant sources from the vector store. These sources,

along with the original query, are then passed to an LLM model

(specifically, the open-source "Meta Llama 3.1" [15]). A system

prompt instructs the LLM to generate an accurate answer using the

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ali Zada et al.

provided context. The system prompts used for different models

are documented at [1].

Experimental Setup: The work was conducted across various

hardware environments, including the Perlmutter supercomputer

for initial implementation, an Apple M1 system for early develop-

ment, and a KVM instance on Chameleon with 1 NVIDIAH100 GPU

(40GB) for deployment and accelerated evaluation. GPU accelera-

tion significantly reduced the latency from user query submission

to answer generation from 10 minutes to 20 seconds.

3 EVALUATION METHODOLOGY
For evaluation, we used 20 test queries on Chameleon features and

policies with ground-truth answers that were generated by Gemini

2.5 Pro [9] and revised by a Chameleon engineer. We compared our

model answers against these ground-truth answers, as well as a

positive baseline (answers from OpenAI’s GPT-5 [16], expected to

perform best) and a negative baseline (answers from Llama 3.1 [15]

without RAG, expected to perform worst).

Fourteen configurations of our RAG model (Models 1-14) were

evaluated by varying parameters such as documentation sources,

chunking sizes, number of matches returned, prompt techniques,

re-ranking, and a Dual-LLM design (full model specifications are

available at [1]).

We employed two primary evaluation methods to compare mod-

els and baselines with the ground truth.

3.1 Similarity Metrics
We measured the statistical similarity between our generated an-

swers and the ground-truth answer using Cosine similarity (vec-

tor similarity) [17], Jaccard score (set similarity) [17], ROUGE-L

(longest common subsequence) [13], and BERTScore (contextual

embeddings) [19]. These metrics are presented in Table 1 and utilize

different algorithms to quantify similarity in unstructured text data.

3.2 Judge Model
We used Anthropic’s "Claude 3.5 Sonnet" [2] as a judge to evaluate

and compare answer quality. In each comparison, the judge model

was presented with one answer from a baseline and one from a RAG

model for the query. It evaluated, scored, and compared both an-

swers against the ground-truth answer, selecting a winning answer

or declaring a tie if both were of similar quality. This methodology

is often more effective than similarity metrics at detecting quality

differences across LLMs for specific tasks like information retrieval

[20], sometimes even matching human quality assessment [8].

4 RESULTS AND DISCUSSION
Aggregate results from our similarity metrics for RAG and base-

line models are presented in Table 1. Our findings indicate that

these standard similarity metrics were insufficient for detecting

differences in the overall quality of generated answers, confirming

previous research [8, 20]. Almost all our models achieved similar

performance across these metrics, even with changes to critical

parameters like documentation sources or system prompts.

The judge model evaluation provided clear insights. Tables 2

and 3 show that early models (1-6) with limited sources performed

poorly. However, later models (7-14) improved significantly by

adding more documentation, enhancing the system prompt, and us-

ing a two-stage similarity search. These models consistently outper-

formed the negative baseline and achieved comparable performance

to the positive baseline (e.g., Model 12).

5 CONCLUSION
In this work, we developed and studied a RAG-based search system

to improve access to Chameleon Cloud documentation. Our find-

ings highlight both the potential and limitations of RAG for scien-

tific documentation. While not a complete replacement for leading

proprietary models, a well-designed RAG system provides clear

benefits over generic models and potentially proprietary models

with sufficient optimization. Future work will focus on integrating

specialized sources like user ticket data with privacy safeguards,

refining a Dual-LLM architecture for user output generation, and

exploring more effective user-feedback-based evaluation metrics.

ACKNOWLEDGMENTS
The results of this poster were obtained on the Chameleon Testbed

funded by the National Science Foundation (Award No. 2431425).

We are grateful to Kexin Pei at the University of Chicago for his

helpful comments.

REFERENCES
[1] Ali Zada, Saieda and Richardson, Marc. RAG-docs-chameleon. https://github.

com/UD-CRPL/RAG-docs-chameleon, 2024. Accessed: 2025-08-25.

[2] Anthropic. Introducing Claude 3.5 Sonnet. https://www.anthropic.com/news/

claude-3-5-sonnet, 2025. Accessed: 2025-08-17.

[3] Beijing Academy of Artificial Intelligence (BAAI). BAAI bge-large-en

Model. https://huggingface.co/BAAI/bge-large-en, 2025. Accessed: 2025-08-17.

[4] Chameleon Cloud. Chameleon cloud blog. https://www.chameleoncloud.org/

blog. Accessed: 2025-08-25.

[5] Chameleon Cloud. Chameleon documentation. https://chameleoncloud.

readthedocs.io/en/latest/. Accessed: 2025-08-25.

[6] Chameleon Cloud. Chameleon users forum. https://forum.chameleoncloud.org/.

Accessed: 2025-08-25.

[7] Chameleon Cloud. Frequently asked questions. https://www.chameleoncloud.

org/help/faq. Accessed: 2025-08-25.

[8] Chiang, T.-H., Hsieh, C.-W., Chuang, Y.-S., Lo, C.-Y., and Lee, H.-y. Can LLMs

be trusted for evaluating RAG systems? a survey of methods and datasets. arXiv
preprint arXiv:2407.11181 (2024).

[9] Google DeepMind. Gemini 1.5 Pro. https://deepmind.google/models/gemini/

pro/, 2025. Accessed: 2025-08-17.

[10] Johnson, J., Douze, M., and Jégou, H. Billion-scale similarity search with GPUs.

IEEE Transactions on Big Data 7, 3 (2019), 535–547.
[11] Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P., Stanzione, D., Cevik,

M., Colleran, J., Gunawi, H. S., Hammock, C., Mambretti, J., Barnes, A., and

Halstead, F. Lessons learned from the chameleon testbed. In Proceedings of
the 2020 USENIX Annual Technical Conference (USENIX ATC ’20) (2020), USENIX
Association, pp. 219–233. website:https://chameleoncloud.org/.

[12] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler,

H., Ott, M., Chen, W.-t., Conneau, A., et al. Retrieval-augmented generation

for knowledge-intensive nlp tasks. In Advances in Neural Information Processing
Systems (2020), vol. 33, pp. 9459–9474.

[13] Lin, C.-Y. ROUGE: A package for automatic evaluation of summaries. In Pro-
ceedings of the Workshop on Text Summarization Branches Out (2004).

[14] Mavroudis, V. Langchain. arXiv preprint arXiv:2405.08933 (2024).
[15] Meta AI. Introducing Meta LLaMA 3.1. https://ai.meta.com/blog/meta-llama-3-

1/, 2025. Accessed: 2025-08-17.

[16] OpenAI. Introducing GPT-5. https://openai.com/index/introducing-gpt-5/, 2025.

Accessed: 2025-08-17.

[17] Rinjeni, T. P., Indriawan, A., and Rakhmawati, N. A. Matching scientific article

titles using cosine similarity and jaccard similarity algorithm. Procedia Computer
Science 234 (2024), 553–560.

[18] Salton, G., Wong, A., and Yang, C. S. A vector space model for automatic

indexing. Communications of the ACM 18, 11 (1975), 613–620.
[19] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. BERTScore:

Evaluating text generation with BERT. In International Conference on Learning

https://github.com/UD-CRPL/RAG-docs-chameleon
https://github.com/UD-CRPL/RAG-docs-chameleon
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://huggingface.co/BAAI/bge-large-en
https://www.chameleoncloud.org/blog
https://www.chameleoncloud.org/blog
https://chameleoncloud.readthedocs.io/en/latest/
https://chameleoncloud.readthedocs.io/en/latest/
https://forum.chameleoncloud.org/
https://www.chameleoncloud.org/help/faq
https://www.chameleoncloud.org/help/faq
https://deepmind.google/models/gemini/pro/
https://deepmind.google/models/gemini/pro/
website: https://chameleoncloud.org/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openai.com/index/introducing-gpt-5/


Retrieval-Augmented Generation (RAG) To Enhance Open Testbed Documentation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Model ROUGE-score BERT-score Jaccard-score Cosine-score
Ave Max Min Ave Max Min Ave Max Min Ave Max Min

model_1_answer 0.1942 0.3980 0.1206 0.7784 0.8322 0.7342 0.1287 0.2875 0.0423 0.4083 0.5975 0.1737

model_2_answer 0.2041 0.3980 0.1141 0.7758 0.8280 0.7409 0.1319 0.3793 0.0411 0.4026 0.6116 0.1996

model_3_answer 0.2044 0.4762 0.1290 0.8397 0.8397 0.7234 0.1522 0.5663 0.0270 0.4230 0.5861 0.1721

model_4_answer 0.2037 0.3318 0.1474 0.7813 0.8462 0.7359 0.1507 0.2532 0.0253 0.4279 0.5968 0.1488

model_5_answer 0.2036 0.4762 0.0942 0.7758 0.8397 0.7097 0.1502 0.5663 0.0270 0.4269 0.6904 0.2221

model_6_answer 0.2081 0.3459 0.1359 0.7761 0.8353 0.7296 0.1320 0.3438 0.0267 0.4060 0.6194 0.1869

model_7_answer 0.2087 0.3693 0.1156 0.7897 0.8296 0.7195 0.1625 0.4579 0.0678 0.4991 0.7591 0.1625

model_8_answer 0.2158 0.3892 0.1329 0.7950 0.8458 0.7616 0.1680 0.4182 0.0769 0.4997 0.7403 0.1367

model_9_answer 0.2010 0.2667 0.1496 0.7874 0.8332 0.7468 0.1419 0.2475 0.0732 0.4551 0.6774 0.2222

model_10_answer 0.1974 0.3243 0.1359 0.7878 0.8262 0.7618 0.1503 0.2410 0.0763 0.4657 0.7604 0.2153

model_11_answer 0.2157 0.4244 0.1399 0.7900 0.8547 0.7268 0.1743 0.3486 0.0531 0.4621 0.6683 0.1897

model_12_answer 0.1992 0.3832 0.1388 0.7695 0.8610 0.6741 0.1841 0.5862 0.0548 0.4435 0.6805 0.1419

model_13_answer 0.1884 0.2989 0.0360 0.7681 0.8111 0.6360 0.1833 0.2286 0.0185 0.4429 0.6453 0.0475

model_14_answer 0.2061 0.3553 0.1442 0.7796 0.8370 0.7027 0.1815 0.6364 0.0680 0.4703 0.7587 0.2091

base_openai_model 0.2031 0.3503 0.1148 0.8020 0.8528 0.7546 0.1807 0.2969 0.1087 0.4632 0.6829 0.2606

base_ollama_model 0.2052 0.3265 0.1081 0.8003 0.8379 0.7361 0.1446 0.2632 0.0505 0.4457 0.7107 0.1336

Table 1: Evaluation similarity metrics (ROUGE-score, BERT-score, Jaccard-score, Cosine-score) with average, max, and min
values for each model and baseline.

Models vs. Negative Baseline Loss Tie Win
model-1 answer 12 1 7

model-2 answer 8 2 10

model-3 answer 6 2 12

model-4 answer 6 1 13

model-5 answer 5 2 13

model-6 answer 7 1 12

model-7 answer 0 1 19

model-8 answer 1 0 19

model-9 answer 2 0 18

model-10 answer 4 1 15

model-11 answer 0 1 19

model-12 answer 0 1 19

model-13 answer 1 0 19

model-14 answer 0 2 18

Table 3: Comparison outcomes between RAGmodels answers
and negative baseline answers (Llama 3.1).

Models vs. Positive Baseline Loss Tie Win
model-1 answer 20 0 0

model-2 answer 19 0 1

model-3 answer 19 0 1

model-4 answer 18 0 2

model-5 answer 19 0 1

model-6 answer 19 0 1

model-7 answer 13 0 7

model-8 answer 14 1 5

model-9 answer 18 0 2

model-10 answer 13 1 6

model-11 answer 14 1 5

model-12 answer 11 0 9

model-13 answer 15 0 5

model-14 answer 13 1 6

Table 2: Comparison outcomes between RAGmodels answers
and positive baseline answers (OpenAI’s GPT-5).

Representations (ICLR 2020) (2019).
[20] Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li,

Z., Li, D., Xing, E., Gonzalez, J. E., and Stoica, I. Judging LLM-as-a-judge with

MT-Bench and Chatbot Arena. arXiv preprint arXiv:2306.05685 (2023).

Received 25 August 2025


	Abstract
	1 Introduction
	2 Approach
	3 Evaluation Methodology
	3.1 Similarity Metrics
	3.2 Judge Model

	4 Results and Discussion
	5 Conclusion
	Acknowledgments
	References

