
Enhancing Usability and Performance in Experimental
Environments Management

Zahra Temori
zahratm@udel.edu

University of Delaware
Newark, DE, USA

Paul Marshall [Advisor]
marshalp@uchicago.edu

UChicago Department of Computer
Science

Chicago, IL, USA

Kate Keahey [Advisor]
keahey@uchicago.edu

Argonne National Laboratory
Lemont, IL, USA

ABSTRACT
Maintaining an identical setup and reproducing environments is a
challenge in high-performance computing (HPC) and research [1].
HPC experiments are resource-intensive and depend on complex
software environments. Existing methods, such as orchestration
with containers, create controlled environments, but require care-
ful setup and maintenance. However, snapshotting captures the
complete state of a system in a single step, allowing researchers to
automatically rebuild and restore identical environments. Although,
concerns remain about snapshot efficiency and usability.

For snapshotting to be useful in HPC research,the tools need to
be simple and straightforward to use. They also need to perform
quickly on large bare metal environments. Therefore, we improved
usability and evaluated the performance of cc-snapshot, a snap-
shotting tool on the Chameleon Cloud [2] testbed. Usability en-
hancements included new command line options, modular code,
and automated tests. To optimize performance, we benchmarked
alternative image formats and compression algorithms. The results
show that zstd delivered up to 80% faster compression time during
snapshot creation compared to zlib, while maintaining similar
compression efficiency. These findings demonstrate that snapshot-
ting can be a practical and effective tool to support reproducibility
in HPC experiment.
ACM Reference Format:
Zahra Temori, Paul Marshall [Advisor], and Kate Keahey [Advisor]. 2025.
Enhancing Usability and Performance in Experimental Environments Man-
agement. In SC ’25: The International Conference for High Performance Com-
puting, November 16–21, 2025, St. Louis, MO. ACM, New York, NY, USA,
2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Reproducibility ensures that experiments can be repeated, validated,
and extended with confidence. Achieving a reproducible environ-
ment requires identical software stacks, with the exact same depen-
dencies, and configuration. The Chameleon Cloud testbed provides
the cc-snapshot tool to support reproducibility by capturing the
complete state of a running system. This allows researchers to rerun

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Supercomputing ’25, November 15–11, 2025, St. Louis, MO
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/25/11
https://doi.org/XXXXXXX.XXXXXXX

experiments exactly as before, share setups among each other, and
avoid potential environmental issues such as missing dependencies
or version mismatches. In this work, we explore how to enhance
snapshotting as a reproducible method and make it an effective
strategy for HPC research.

2 APPROACH
The project was divided into two phases. The first phase focused
on usability, reorganizing the tool, and expanding its capabilities.
The second phase was benchmarking to evaluate alternative im-
age formats and compression methods to improve snapshotting
performance.

2.1 Usability Enhancements
The original snapshotting tool had challenges including a limited
command line, tightly coupled logic, and minimal testing support,
which made it difficult for users to interact with and developers
to maintain. To enhance the command line interface, we added a
flag to disable automatic updates, giving users more control over
when to pull the latest version. We also added a dry-run flag to
simulate actions before running a snapshot, allowing developers
to test and run safely. Moreover, we implemented support for a
custom source path, enabling snapshots of specific directories. This
helps developers test smaller directories rather than full snapshots,
which can be more complicated when testing functionalities. To
improve maintainability, we refactored the codebase into five mod-
ular functions, allowing developers to make future changes more
easily. In addition, we added automated tests with GitHub Actions
to validate new and existing features and ensure that changes work
as expected.

2.2 Performance Optimization
The default format and compression on snapshotting was Qcow2
with zlib, which often resulted in long snapshot creation time. To
address this performance issue, we benchmarked other alternatives
such as QCOW2 with zstd compression, and RAW with no com-
pression. We also chose three images of varying sizes: small 4.47
GiB, medium 7.62 GiB, and large 12.7 GiB. The medium size image
was user created to demonstrate the snapshotting and compres-
sion works for both Chameleon-supported images and user-created
images.

3 RESULTS
We ran each imagewith different compressionmethods and recorded
four key metrics: creation time, upload time, boot time, and final

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Supercomputing ’25, November 15–11, 2025, St. Louis, MO Zahra Temori

image size. We calculated the overall time of each compression
method from experiments on three different image sizes to evaluate
which performed better. The results revealed that zstd compression
reduced the creation time around 80.6% across the three image
sizes. The upload time for zstd was nearly equal to the zlib method,
while RAW images, due to no compression and larger size, uploaded
much slower compared to images compressed with zlib and zstd.
The boot time was nearly the same across all images, confirming
that zlib and zstd take about the same time to uncompress, while
RAW images take longer to boot due to large size.

Our work suggested that QCOW2 with zstd compression should
be used instead of QCOW2 with zlib compression when creating
a snapshot. This enables researchers to generate and share repro-
ducible environments faster and improve turnaround time.

4 CONCLUSION
Snapshotting is a practical way to support reproducibility in HPC,
but to be effective, it should be easy to use and fast enough for real
research workflows. Our results show that using zstd compression

can drop the snapshot creation time by over 80% compared to the
common default zlib compression, without affecting upload or boot
performance.

Looking ahead, we plan to integrate zstd , try it on more work-
loads and image types, and explore ways to improve snapshotting
for even greater speedups and reliable results.

5 ACKNOWLEDGMENTS
The results of this poster were obtained on the Chameleon Testbed
funded by the National Science Foundation (Award No. 2431425).

REFERENCES
[1] Kate Keahey, Marc Richardson, Rafael Tolosana Calasanz, Sascha Hunold, Jay

Lofstead, Tanu Malik, and Christian Perez. Report on challenges of practical
reproducibility for systems and hpc computer science, April 2025.

[2] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. Lessons learned
from the chameleon testbed. In Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC ’20). USENIX Association, July 2020.


	Abstract
	1 Introduction
	2 Approach
	2.1 Usability Enhancements
	2.2 Performance Optimization

	3 Results
	4 Conclusion
	5 Acknowledgments

